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ABSTRACT

LATTICE TRUSS STRUCTURAL RESPONSE USING
ENERGY METHODS

Winfred Scottson Kenner

Old Dominion University, 1996

Director: Dr. Norman F. Knight, Jr.

A deterministic methodology is presented for developing closed-form

deflection equations for two-dimensional and three-dimensional lattice

structures. Four types of lattice structures are studied: beams, plates,

shells and soft lattices. Castigliano's second theorem, which entails the

total strain energy of a structure, is utilized to generate highly accurate

results. Derived deflection equations provide new insight into the

bending and shear behavior of the four types of lattices, in contrast to

classic solutions of similiar structures. Lattice derivations utilizing kinetic

energy are also presented, and used to examine the free vibration

response of simple lattice structures. Derivations utilizing finite element

theory for unique lattice behavior are also presented and validated using

the finite element analysis code EAL.
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CHAPTER I

INTRODUCTION

1.1 General

Trusses are rigid skeletal frameworks utilized to provide support for

structures or equipment. They are generally composed of long slender

members. Typically these members are joined together with pin-connectors.

Some attractive structural features of trusses are their low material to load

carrying characteristics relative too solid beams, ease of construction, and

predictable behavior while incurring load. Truss designers rely on geometry,

redundancy and/or arch action to tailor and optimize trusses for various load

applications. These and other design parameters play a crucial role in the

performance of cranes, bridges, domes, and space-based structures. Examples

of typical space-based trusses are presented in Figures 1.1 and 1.2. Various

truss applications require designer evaluation of behavior for operational

loading, vibrational excitations, or loads during truss construction. For

preliminary analysis or conceptual studies, designers often study single- or

double-layered planar lattice truss structures, which have regular and patterned

geometries, to gain insight into their structural behavior. Lattice structures are

attractive for stiffness and vibration analysis methods because their repetitive

geometries are represented by mathematical models and numerical programs
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in a more accurate manner than trusses with curvature or local variations.

However, even the study of lattices encompasses a wide range of analysis

techniques. Many reports and books have been published on lattice stiffness

analysis, tailoring for load-transfer efficiency, and vibration response prediction

(see [Ref. 1-7]). One of the most common types of analysis for lattice structures

is the continuum approach in which a lattice's stiffness properties are

represented by an equivalent continuum model. However, continuum analysis

is most useful for large lattices with many repeating cells. In general transverse

shear effects are not included in the analysis of lattices; however, shear

effects can be included with additional mathematical terms. This and other

lattice analysis drawbacks have prompted this study. In general, the overall

objectives of the current work are to review current lattice analysis methods and

to conduct a comprehensive study of lattices of varying geometry by accurately

quantifying their static behavior. Resulting lattice expressions are compared to

similar one-and two-dimensional linear elastic expressions in solid mechanics

to provide new insight into structural behavior.

1.1.1 Historical Background

Hellenistic builders invented the truss in the third century B. C. The

theoretical basis for it may have been the finding of Greek geometers that the

triangle is one type of rigid framework. Greek architects and engineers passed

their knowledge of trusses to the Romans. Three of the better-known types of

trusses - related to bridges are those of Howe, Pratt and Warren (see Ref. [8]).
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1.2 Foundation

Basic similarities and differences between lattice analysis and linear elastic

analyses for closed-form solutions in three-dimensions are depicted in Figure

1.3. The top left corner figure depicts a generic three-dimensional linear elastic

material with load. The only means of analysis are the principle of virtual work

and the principle of minimum total potential work. If no simplifying assumptions

are made, closed-form solutions are virtually impossible to derive. To proceed

further, the three-dimensional material field is usually simplified to a two-

dimensional material field for a plane stress or a plate bending analysis, or a

one-dimensional field for a beam analysis depending on the geometry. The

upper right corner figure list some of the fundamental assumptions of one-and

two-dimensional linear elastic materials which have closed form solutions.

Additionally some assumptions not mentioned include: (1) uniform stress-strain

fields; (2) neutral-axis is unstrained; (3) deflection is small compared to

thickness; (4) structures designed to resist lateral loading are generally circular

or rectangular in shape; and, (5) transverse shear behavior is seldom

considered.

The analysis of a truss structure in three-dimensions differs from that of a

linear elastic material in that trusses are deterministic structures. The lower

left corner figure of Figure 1.3 represents a generic three-dimensional linear

elastic truss, and listed below it are various analysis techniques common to

lattices and three-dimensional linear elastic media. Although analysis of a

random arrangement of truss members can theoretically be performed, it rarely



4

is because of mathematical complexities. The current study eliminates some of

the analysis complexity by examining a subset of trusses, and lattices, which

have repeating rectangular sections and tractable member loads. The study

presents and examines lattices in one- and two-dimensions as in solid

mechanics, and since all lattices are deterministic, lattices in three-dimensions

are also presented and examined. The lower right corner figure of Figure 1.3

represents a typical one-, two- or three-dimensional lattice of this study. Some

of the fundamental assumptions are listed below this figure. With these

simplifying assumptions and analysis methods, an indirect means of multi-

dimensional linear elastic structural analysis is presented.

1.3 Literature Review

As mentioned previously, the analyses of lattice structures for civil

application with various loading and boundary conditions for the acquisition

of: 1 .) member stress or strain values; 2.) nodal deflection; or, 3.) lattice stiffness

parameters have been the focus of much research in the past. The leading

lattice analysis methods are traditional methods from statics, energy methods,

continuum modeling, and finite element analysis. A description of each type

follows.

1.3.1 Elementary Methods from Statics

Historically, the field of statics has provided several adequate discrete

nodal deflection and member load analysis techniques such as the methods of

joints and of sections (e.g., [Ref. 9]). However, static techniques are time
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consuming, tedious, produce very complicated solutions for redundant

structures, and are inadequate for developing global lattice stiffness

parameters. Global lattice stiffness parameters provide an overall indicator of

truss static behavior.

1.3.2. Elastic Stress-Strain Relations and Energy Methods

As an alternative to static analysis, the analysis of trusses can be accom-

plished by determining the elastic stress-strain relationships of the material.

Stress tensors, _=j,arise from equilibrium considerations and strain tensors, _,j,

arise from kinematic considerations. These tensors are related by constitutive

relationships. If the constitutive relationships relate stress and strain directly,

uniquely, and linearly the material is referred to as linear elastic; the constitutive

relationship becomes the generalized Hooke's law as given by

_',j = C,j,, e,, (1)

The definition of C_j,_ stiffness parameters distinguish isotropic, composite [10]

and lattice-like materials. This technique is usually referred to as the Newtonian

approach. Derivation of a stiffness parameter for a truss with this approach is

very difficult because of the unknown stress-strain relationship. Simplifying

assumptions lead to continuum analysis.

Elastic material analysis is also accomplished with energy methods or the

Lagrangian approach. In the study of continuous media, variational methods

based on energy principles provide additional analysis tools based on the

underlying equations of equilibrium, assumed kinematics, and constitutive
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relations [10]. These methods are commonly based on the principle of

minimum total potential energy or the principle of virtual work. The strain

energy of a elastic body is calculated from the constitutive relationships. For

example, in a one-dimensional field, strain energy equals one half times stress

times strain. Simplifying assumptions for isotropic materials also lead to

commonly used stiffness parameters for rods and beams [11] such as

EA
(2)

El
_. (3)

Once the strain energy expression is defined for the structure, Castigliano's

theorems are frequently employed to determine deflections utilizing the unit

load method. Therefore, discrete deflection values are commonly obtained

through the use of Castigliano's theorems. However, Castigliano's theorem

requires a lattice structure's total strain energy which involves significant

computational effort to evaluate similar to the methods from statics.

1.3.3. Continuum Modeling

Continuum analysis is a closed-form solution technique used to derive lattice

stiffness parameters that assumes the global elastic behavior of a lattice

can be represented by an equivalent continuum. Several continuum analysis

methods have been develop. Two such methods are the discrete field

method [2-4] and Neyfeh's method [7]. Both methods are good for producing

stiffness parameters for large lattice structures without transverse shear effects.
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Discrete field methods assume various equivalences between the lattice and

continuum at typical lattice nodes. These equivalences can involve equilibrium

and compatibility equations, potential and kinetic energies, nodal deformations

and rotations [3], and member forces and/or member strains [2]. The transition

from lattice to continuum is performed by expanding one or more of the

previously assumed fields in a Taylor series about the origin of the repeating

element [4].

Neyfeh's continuum method [7] treats parallel lines of lattice members as

single equivalent sheets of composite lamina. As in composite theory, a local

stiffness matrix is derived for each lamina sheet, transformed to the primary axis,

and the resulting matrices are summed to produce the global stiffness matrix of

the lattice.

1.3.4. Finite Element Analysis

During the past forty years, finite-element analysis methods have been

developed. Very early formulations are related to the framework or lattice

analogy for stress analysis. Finite element analyses produce very accurate

discrete values, and it is applicable to a wide range of lattice structures [12-15].

However, it can be expensive in terms of personnel to develop and verify finite

element models and their results, requires a high degree of computing

efficiency, and is inadequate for developing global lattice stiffness parameters

for use in design.

Using a finite element analysis system such as EAL [16], individual members

are each represented as a spatial rod element with a corresponding Young's
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global coordinates of the member end points. Assembly of the finite element

model produces a global stiffness matrix that can be very large for large lattice

structures. As the lattice design changes, modifications to the finite element

model may be minor (i.e., selected changes in member cross-sectional areas)

or more significant if the geometry is changed.

In summary, these methods vary from elementary methods of statics to

complex methods involving equivalent continuum models to equivalent discrete

models. These methods provide different levels of solution and perhaps are

best used to verify the final design. However, as the lattice design evolves a

more general method is needed.

1.4 Objectives and Scope

This paper provides a fundamental and integral approach to the study of

lattices. First, lattice geometry, symmetry, topology, and design is examined.

Next, lattice behavior or mechanics is examined, and a new methodology for

the analysis of lattice structures is presented. The methodology provides insight

into lattice design for strength or stiffness. Additionally, great emphasis is

placed on exact solutions of various lattice parameters such as nodal

displacements and member loads. This limits the scope of the study but allows

for greater insight into the behavior of selected lattice geometries.

Specific objectives of this research are: 1 .) To develop simple closed-

form exact deflection and vibration equations using Castigliano's second
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theorem over the nodal domain of uniform lattice structures; 2.) To develop

expressions for highly redundant lattice structures by using compatibility

requirements; 3.) To develop truss geometries which under uniform

loading exhibit sixth- and eighth-order behavior for deflection; and, 4.) To

develop associated finite element stiffness matrices and validation procedures.

Warren, tetrahedral and modified versions of the Warren lattice design

are the primary configurations examined in this study due to the extensive

amount of previous work on similar lattice geometries. Deflection equations are

presented in mathematical form as functions of the number of bays or cells. All

lattice members are assumed to have pinned nodal connections and to behave

as linear elastic axial rods.



CHAPTER II

LATTICE DESIGNS

2.1 Overview

The structure of a solid material may vary from a crystalline-like material

(e.g., metal, wood) to an amorphous material (e.g., glass). The fundamental

characteristic of a crystalline material is periodicity of a unit atomic structure.

There are only fourteen possible networks of lattice points for a unit structure

and seven crystal systems [17]. Lattice structures have similar characteristics

[5]. Lattice morphology or crystallography are common terms used to describe

the science of certain repetitive structures. The basic relationship between

geometry and behavior is studied to assist in the design of load efficient,

reliable, and damage-tolerant lattice structures. However, most work in this

area assumes that the basic unit lattice cell is infinitesimally small. In contrast,

this study centers on the behavior of one cell, two cells, and progressively

higher numbers of cells. By analyzing the basic cell to a higher degree,

hopefully a better understanding of lattice behavior will be achieved.

Four groups of lattices with varying cell geometries are presented for

analysis. Some lattices have traditional symmetric crystal-like cubic or

tetrahedral cell geometries while others have asymmetric geometric cells. As

will be illustrated, the lattice geometric domain is far larger (i.e., cross lacing,

lo
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asymmetric cells) than the seven crystalline geometric domain commonly

studied. The lattices in each of the four groups are designed to capture this

variation and hence, explore material behavior in structural mechanics which is

undetermined.

2.2 Lattice Geometries

The number of lattices studied are too numerous to describe individually,

therefore a general definitions of the four major types of lattices is provided.

The various geometries are aligned to an axis, and represent lattices of finite

length of n-bays or n-cells. Lattice depth is held constant along the length.

Bays are the repetitive lattice unit in two-dimensions, and cells are the repetitive

lattice unit in three-dimensions. Lattice bays and cells consist of three types of

members: Iongerons, diagonals, and battens. Longeron members usually lie

parallel to the horizontal axes or plane. Battens usually lie parallel to the

vertical axis, and diagonal members usually bisect the rectangle formed by the

Iongeron and batten members. Each member is defined by its geometric

location in the lattice. Surface members lie on the parallel upper and lower

expanding horizontal planes of a lattice, and core members lie in between the

two parallel surfaces. The four types of lattice structures considered include: 1.)

beam-like lattices in both two-and three-dimensions; 2.) plate-like lattices in

two- and three-dimensions; 3.) shell-like lattices in two-and three-dimensions;

and, 4.) soft plate-like lattices in three-dimensions.
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2.2.1 Beam-like Lattices

Several two-and three-dimensional Warren-type lattices representative of

classic beam-type lattice structures are presented in Figure 2.1. Beam-type

lattices consist of linearly replicated bays in two-dimensions and cells in three-

dimensions. The repeating elements of the Pratt lattice in two-dimensions and

of the Warren lattice in three-dimensions are highlighted in gray. Various lattice

members are also identified.

The two-dimensional top lattice is commonly called a Pratt lattice wherein the

diagonal members are oriented in the same manner connecting two Iongerons.

Warren lattices have alternating diagonal members, and quadrangular Warren

lattices have crossing diagonal members. Alternative forms, such as the

Baltimore design often involve additional Iongerons, diagonals, or batten

members per bay as illustrated in Figure 2.1(a).

Three-dimensional beam-like lattice structures have rectangular and

triangular cross-sections as illustrated in Figure 2.1(b). The three-dimensional

Warren beams consist of two two-dimensional Warren beams connected by out

of plane diagonal and batten members. Beam-like lattices are studied for a

wide range of applications.

2.2.2 Plate-like Lattices

Various views of Warren and tetrahedral plate-like lattice geometries are

presented in Figures 2.2 and 2.3. Plate-like lattices consist of cells which are

bilinearly replicated. Warren plate-like lattices have a rectangular volumetric

design, with one diagonal per cubic face. Tetrahedral plate-like lattices consist
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of tetrahedral and octahedral cells. All of the members in a regular tetrahedral

lattice have the same length. A tetrahedral lattice is derived from a Warren

lattice by rearranging the diagonal members and displacing alternating rows of

nodes by one. Therefore, the total number of members in equal bay

configurations of both lattices are the same. Warren and tetrahedral lattice

geometries are attractive for analysis because they can be tailored to have

pseudo-isotropic (i.e., analogous to a laminated composite plate with a stacking

sequence of 0/:!:45/90, or + 60/0) face-sheet arrangements of members for the

top and bottom surfaces, and they are highly redundant (e.g., Ref. 5). The

repeating cells of each lattice are highlighted in gray, and various groups of

members (i.e., surface, core) are identified.

2.2.3 Shell-like Lattices

Ring, cylindrical, and spherical geometries are presented in Figure 2.4 as

representative of shell-like lattice structures. The ring cylindrical lattices have

bays which are axially symmetrically replicated, and the spherical lattices have

cells which are spherically symmetrically replicated. The two-dimensional ring

lattices have the same bay geometry as the two-dimensional Warren lattices;

however, the inner surface members are shorter than the outer surface

members. The spherical geometry is representative of a polyhedral sphere

comprised of n-equilateral triangles. Few lattice stiffness papers [1-7] have

been written on shell geometries, because stiffness values can be obtained

from analogous plate analysis. However, there is a stiffness difference do to
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unequal inner and outer member lengths especially for geometries with few

bays.

2.2.4. Soft Plate-like Lattices

Two types of hybrid Warren plate-like lattices or soft lattices are presented in

Figure 2.5. Soft plate-like lattices consist of cells which are linearly replicated.

The geometries are derived from the basic Warren lattice geometry presented in

Figure 2.2 by the removal of surface Iongerons and/or diagonals. These

members are selected for removal because they seem critical to the bending

stiffness of Warren lattices in two-and three dimensions. These lattices are

designed to be inherently weak in bending, and to serve indirectly as test cases

to assess the accuracy of the analysis method qualitatively.



CHAPTER III

LATTICE ANALYSIS PROCEDURE

3.1 Overview

To understand lattice behavior, various lattice components and analysis

techniques are defined. Lattice structures consist of two main components:

1.) members which are only capable of transmitting compression and tension

reactions; and, 2.) pinned nodes which are the frictionless connection points of

the lattice members. The arrangement of members will depend on the structural

function to be desired. Constraints serve to prevent lattice structures from

translation or rotation due to loading. In two-dimensions, constrained lattice

structures by definition adhere to a minimum member m to node n relationship.

This relationship for a two-dimensional lattice is

m = 2n (4)

and for a three-dimensional lattice the relationship is

m = 3n (5)

Equations (4) and (5) are referred to as Maxwell's equations for structural

stability or kinematic stability. Lattices which have more than the required

number of members have redundant members. Lattices which have more than

the required number of constraints to prevent translation or rotation have

redundant constraints.

15
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3.2 Static Determinacy

A statically determinate lattice structure exposed to external forces is defined

as an internal system of pinned members and constraint arrangement from

which internal forces and displacements can be determined exactly by the

equations of statics (i.e., using the method of joints, or method of sections) [8]. A

vast majority of statically determinate lattices, adhere to Maxwell's equations.

However, if the number of members in a lattice is less than 2n or 3n then a

mechanism results. All of the lattices in groups one and four defined in Section

2.2 are statically determinate.

3.3 Static Indeterminacy

A lattice structure is considered statically indeterminate if member loads

can not be determined through static analysis. Statically indeterminate

analysis considers member elasticity and the equations of equilibrium.

A lattice structure is defined as kinematically stable if it is statically determinate

or statically indeterminate.

There are several procedures for solving statically indeterminate lattice

problems exactly. The MaxwelI-Mohr method and the Castigliano method [17]

are two such methods. Both methods start with the removal of all redundant

members from a lattice structure. Each member is replaced by equal and

opposite reactive forces at the associated nodes. The lattice is now statically

determinate and can be analyzed. The magnitude of the unknown reactive

loads are found from the requirement that initial lattice nodal deflections must
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vanish with the application of the original load and the member replacement

loads. These techniques become very complicated for highly redundant lattices

and therefore are rarely utilized. All of the lattices in group's two and three are

statically indeterminate.

3.4 Castigliano's Second Theorem

To acquire statically determinate and statically indeterminate lattice behavior,

a highly rigorous analysis method is desired. Knowing that the application of

Castigliano's second theorem derived from a total complementary energy

functional captures all of a material's displacement behavior due to point forces

prompted its use. The generalized Castigliano's second theorem is presented

mathematically as,

o_U,
5, = E (6)

ae,

where U' is complementary strain energy, P_is a generalized force, and 5j is the

generalized displacement in the direction of P_. In words, Castigliano's second

theorem states that the partial derivative of the complementary strain energy

with respect to any independent generalized force Pj is equal to the generalized

displacement 8_located at the force P_and in the direction of Pj. Equation (6) is

simplified for this study due to the analysis of linearly elastic members at

constant temperature. Hence, the complementary strain energy is equal to

strain energy, U = U', and equation (6) reduces to

_U

5_= _
(7)
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This form of Castigliano's second theorem, utilized for this study, states that for a

linear elastic system at constant temperature, the partial derivative of the strain

energy with respect to any independent generalized force P_ is equal to the

generalized displacement 8_ located at the force Pj and in the direction of P_.

3.5 Exact Deflection Derivation

To analyze statically determinate lattice groups one (beams) and four (soft,

plate-like), a simple exact static analysis procedure is used consisting of

Castigliano's second theorem, and extrapolation functions. The analysis

procedure consist of four main steps: 1.) generating a lattice model with defined

repeating bays or cells, boundary conditions, and specified loads;

2.) calculating lattice member loads per bay or cell; 3.) deriving nodal

displacements per bay or cell using Castigliano's second theorem; and,

4.) deriving a displacement function using an extrapolation function for an exact

fit.

To provide an understanding of the procedure, an example is presented.

Figure 3.1 contains a cantilevered Pratt design lattice beam with an end load ,P,

and associated internal member loads. A Pratt lattice has two rows of

Iongerons, vertical battens and intermediate diagonal members. Member load

results are obtained through any type of static analysis (i.e., the method of

joints). Analysis of the first four bays is illustrated on the Figure 3.1. Analysis of

the first bay is presented in the upper left corner. A deflection value (8) is

obtained by summing up the strain energy of the five members. This step is
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given by

(_ = _ Fi((_Fi)Li (8)
i=1 EiAi

where F_ is the member load due to actual forces, ,SF= is the member load

due to a unit virtual load, applied at the desired point of displacement, and L i

are the member lengths. This is an application of Castigliano's second

theorem. Analysis of a two-bay configuration is presented in the upper right

corner. Again a deflection value is generated. Deflection values are generated

through member load analysis of lattice beams with successively higher

number of bays as indicated. Generated deflection values for one, two and

three bays are presented in the table form in Figure 3.1. As additional bays are

analyzed, their contribution to the tip deflection is zero for more than four bays.

Hence, the tip deflections for these four bays allow a fit to a cubic function in

terms of the number of bays n. The derived exact deflection values presented in

the table are then fit to a third-order polynomial function. Note, member load

and deflection values are rational expressions due to geometry, boundary

conditions, and the applied load. These are critical design and analysis criteria,

because the derivation of rational coefficients for the third-order extrapolation

polynomial is only possible with rational displacement values. The resulting

third-order deflection function is given by

y(n) = _ 3 . -_- . 2._n

bending shear

term terms

(9)
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which represents the exact vertical deflection equation of the node where the

point load is applied for a finite number (n) of bays, and can be verified through

analytical methods or finite element programs (EAL, NASTRAN). Note the

bending term results from surface Iongeron members, and the shear terms

result from core members. A third-order polynomial function is chosen as an

extrapolation function because of the analogous solid mechanic solution for

end deflection of a cantilevered beam of length L given by

y _ PL3 (10)
3El

and because surface member loads of the four-bay configuration increase from

the applied load in a linear fashion. In general, the type of extrapolation or

interpolation function is dependent on the change in member load from cell to

cell. Since rational values can be fit to any type of mathematical function (i.e.,

nth-order polynomial function, or trigonometric function), this analysis has wide

appeal for linear and nonlinear elastic material problems.

A comparison of the Pratt derived displacement equation using strain energy

and a solid mechanic beam displacement equation is presented to highlight the

difference. The moment of inertia, I, in equation (10) is calculated using the

parallel axis theorem

I = 2AdZ = 1A£ 2 (11)
2

where d is t times one half. Equation (11) substituted into equation (10)

generates

2P_

Y = 3AE
(12)
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Therefore the classic beam derivation, equation (12), is the first term of lattice

equation (9) with n equal to one. An even more rigorous solution with shear terms

can be produced using Timoshenko beam theory or a plane stress analysis with

an Airy stress function [9]. However, in general, plane elasticity analysis is limited

relative to strain energy analysis for lattice structures. The versatility of the

presented energy method for other lattice structures will be illustrate with additional

example problems in subsequent sections. As a result of this analysis method,

derived solutions are referred to as exact.

It is interesting to note that the expression derived for the end deflection on an n-

bay truss given by equation (12) may be generated to obtain the end deflection for

the m-th bay of an n-bay truss by successive application of Castigliano's second

theorem. Such an expression will be analogous to the deflection equation of a

cantilevered beam where the distance measure along the truss axis is m instead of

x. In the case of classical beam theory, repeated differentiation of the beam

deflection equation until a constant right-hand-side term appears results in the

governing differential equation of the beam. Repeated integration of this single

differential equation and application of boundary conditions will again give the

deflection equation. It is believed that similiar steps may be performed using these

exact deflection expressions for various lattices where the independent variable is

m instead of x for the beam. Close examination of the resulting differential-like

expressions may provide insight for further extensions to buckling and vibration

problems.
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3.6 Approximate Deflection Derivation for Static Indeterminacy

Statically indeterminate lattice analysis is an approximate method which

views parallel rows of surface members as representative layers of composite

lamina. This method is not exact; however, it provides highly accurate

solutions, shear terms and is applicable to a wide range of highly redundant

lattices. The surfaces of an infinitely wide planar lattice (e.g., Figures 2.2 and

2.3) consist of parallel rows and columns of members oriented at different

angles. For example, the Warren planar lattice has parallel members oriented

at O, :1:45, and 90 degrees, and the tetrahedral planar lattice has parallel

members oriented at 0 and +60 degrees. The presented analysis procedure

assumes that a redundant planar lattice can be decomposed or simplified and

represented by several statically determinate lattices with one row or two

symmetric rows of parallel surface members. For example, a statically

indeterminate O, i-60-degree lattice is represent by a statically determinate

O-degree lattice and a statically determinate !-60-degree lattice. The core

member arrangement remains the same since core members only contribute to

lower order shear terms. After the deflection equations are derived for each

lattice, a compatibility requirement is applied to sum the reciprocal of the

respective deflection equations and derive the statically indeterminate

deflection equation. The accuracy of the equation is verified through analytical

methods. Stiffness parameters, (e.g., El or D), are obtained through comparison

to classic solid mechanic deflection equations. This procedure applied to

redundant lattice plates and beams is illustrated in Chapter 4.
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The previously discussed procedure is utilized to analyze a redundant lattice

structure and to derive extension equations. Two parent statically indeterminate

lattices are presented at the bottom left and right of Figure 3.2 with axial loads.

Associated nodal extensional derivations are presented above each figure.

The lattice in Figure 3.2 (a) is oriented along the x-axis in a one-dimensional

displacement field, and the lattice in Figure 3.2 (b) is in the x-y plane two-

dimensional displacement field. In Figure 3.2 (a) the parent lattice is

decomposed into a rod-like 0-degree Iongeron lattice and a diagonal +45

degree type lattice. The strain energy and displacement principles illustrated in

Figure 3.1 are applied, and a displacement equation is derived and presented

below each statically determinate lattice. With a compatibility requirement, the

reciprocal of both displacement equations are summed, and the final

displacement equation for the statically indeterminate lattice is presented below

the parent lattice in Figure 3.2 (a). This equation is exact because both

statically determinate displacement equations are derived in the same x-axis

displacement field. Each displacement equation represents the average

displacement of the three nodes where point loads are applied.

The lattice in Figure 3.2 (b) is decomposed into a rod-like 0-degree Iongeron

lattice and a :l:45,90-degree lattice due to the inclusion of the y-dimension.

Both displacement equations are derived and presented in Figure 3.2 (b) below

each lattice. Again, with a compatibility requirement, both equations are

summed, and the resulting equations is presented below the redundant parent

lattice. This equation is not exact because the two statically determinate lattices
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have different displacement fields. However, nodal displacement results are

highly accurate and can be verified through finite element analyses.

3.7 Finite Element Models

The following study is conducted with a finite element analysis program

called Engineering Analysis Language (EAL) [15]. Each lattice is

modeled and analyzed within EAL. Each member is represented by a rod

tension and compression element with pinned ends. All loads are applied

directly to the nodes, and material and section properties have arbitrary unit

values of one. The use of a computer facilitates the derivation of member loads

and validates derived equation results. Computer use is critical since hand

calculations of some lattice problems is a daunting task.

3.8 Symmetry Exploitation for Statically Indeterminate Analysis

The previous definition for statically indeterminacy is generally accepted;

however, symmetry is often utilized to simplify analysis of statically

indeterminate structures in solid mechanics. For example, a beam with two

fixed ends has one redundant constraint, and a hollow sphere with a uniform

pressure load is structurally redundant. However, through the use of symmetry

assumptions both statically indeterminate structures are analyzed as

determinate structures using only the equations of equilibrium.

In a similar way, symmetric designs and loads are utilized to help analyze

statically indeterminate lattices. This is facilitated in lattice designs through: (1)

neutral load planes; (2) symmetric shapes; (3) symmetric loading; and, (4)
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symmetric boundary conditions. These characteristics do not guarantee

statically determinate behavior of a statically indeterminate lattice, but in

general, they represent basic requirements.

3.9 Comments on Analysis Considerations for Design

In designing the lattices of the upcoming four lattice groups, all of the

previous definitions are incorporated. Statically determinate and symmetric

indeterminate beam-like lattices of group one are very common, and since they

can be solved exactly with the equilibrium equations, they provide a good

validation of the new analysis procedure presented herein. Plate-like lattices

are inherently indeterminate (several researchers have attempted to discover

statically determinate plate-like lattices and still none have been found) and

therefore don't lend themselves to exact analysis. The lattices of the third group

have nonlinear geometries in addition to being statically indeterminate, and

therefore present additional complexity over the linear lattices of the first two

groups. Last, soft plate-like lattice designs inherently exhibit higher-order

displacement fields than those considered in typical continuum analysis.

The present techniques are uniquely capable of capturing these complex

response characteristics. All of the previously mentioned lattice characteristics

(e.g., static indeterminacy, symmetry, and circular geometry) are inherent in the

four groups of lattice geometries, and their effects on lattice behavior are

communicated through upcoming analysis equations presented in Chapter 4.



CHAPTER IV

ANALYSIS RESULTS

4.1 Overview

Deflection equations are presented for four lattice geometries to illustrate

the analysis procedure and to provide insight into one-, two-, and three-

dimensional statically determinate and indeterminate lattice behavior.

Lattice geometries and derived deflection equations are discussed through

references to linear elastic solid mechanic structures (e.g., rods, beams, plates).

As previously mentioned, all lattices are modeled, analyzed, and validated with

EAL.

4.2 Linear Elastic Beam Overview

Beams are often statically determinate structures designed to carry loads

along one major axis (e.g., length). They are usually designed with a minimal

length to width and depth ratio of ten to one. Euler investigated and derived the

primary bending behavior of beams while Timoshenko expanded beam theory

with shear terms [10]. However, shear terms are usually not calculate during

elementary beam derivations. The stiffness parameter of a beam is El, which is

the product of Young's modulus and the moment of inertia.

26
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4.2.1 Two-dimensional Lattices Overview

The following five lattice beams are statically determinate with uniform

loading. Vertical point loads are applied evenly to upper and lower surface

nodes. The five lattice geometries all possess rectangular bays like the Pratt

lattice geometry presented earlier. In contrast to an elastic beam, lattice beam

transverse shear is explicity represented in a truss, and lattice beam width

theoretically does not exist. Lattice nodal deflection equations are simple to

derive, as illustrated in Section 3.5, and bending and shear terms are easily

associated with surface or core members. All values of n give exact solutions.

Members are assumed not to buckle or deform in a nonlinear fashion due to

Ioadings. Equivalent beam stiffness parameters such as El are derived for the

lattice beams as illustrated earlier. The cross sectional area of a member is A, E

represents Young's modulus of the member material, P represents an applied

point load, and P' represents an applied distributed load. The unit length _, and

n, number of bays or cells, are defined relative to each lattice group.

4.2.1.1 Warren

The geometry and deflection equations for a cantilevered Warren lattice

beam with an end load and a distributed load are shown in Figure 4.1. A

Warren lattice has parallel upper and lower surface Iongeron members with

vertical batten members and connecting diagonal members. One bay

is highlighted in gray on the lattice where H represents the beam's height,

represents the length of a Iongeron member and one bay of the lattice, n
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represents the number of bays in a particular lattice design, n times _ equals the

length of the lattice.

Deflection equations are also presented on Figure 4.1 for rectangular and

square bay lattice configurations with point and distributed loads. Note that in

these equations n squared is excluded. This means that moments generated

as a result of the Ioadings do not include a component which is constant along

the beam length. The derived lattice deflection equations are analogous to

classic linear elastic beam deflection equations. Since point loads are equally

divided among upper and lower nodes, the deflection equation generates

values on the horizontal neutral axis between the surface nodes. As previously

noted, the third- and fourth-order terms of the deflection equations represent

bending while the lower order terms represent shear. Third- and fourth-order

bending terms are generated from surface members while lower order terms

are generated by core batten, and diagonal members. Note, for the square bay

case with an end load, the bending term is the same as the bending term of the

Pratt lattice due to equivalent beam depth (see Figure 3.1). The diagonal

member lacing pattern of the Warren lattice allows a more efficient load transfer

than Pratt lacing, hence Warren shear terms are smaller. Constant terms

represent deformation within the end bay of the truss, equivalent to St. Venant

effect in continuum. Since this lattice design is statically determinate, loads

applied to any node result in relative deflection equations. A member count

equation as a function of the number of bays is also presented.
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4.2.1.2 Quadrangular Warren

A quadrangular Warren lattice beam is presented in Figure 4.2. It is

derived from the Warren lattice by adding an additional diagonal member per

bay. Again, general deflection equations are presented for end and distributed

Ioadings, and deflection equations are presented for a square bay

configuration. The derived lattice deflection equations are analogous to elastic

beam deflection equations. One bay is highlighted in gray. Surface Iongeron

members generate third- and fourth-order bending terms, while core members

generate lower order terms. All quadrangular Warren third- and fourth-order

bending terms equal Warren bending terms for equivalent depths.

Quadrangular Warren diagonal members allow a more efficient load transfer

than Warren or Pratt geometries.

Inherit geometric characteristics significantly distinguish this lattice design

from previous lattice beam designs. Uniquely, batten members are not strained

while the beam is loaded, and constant terms are not generated in the

deflection equation derivations. Additionally, this lattice has one redundant

member per bay, and lattice behavior is statically determinate only with the

application of two equivalent point loads on vertically aligned nodes. Hence,

the determination of a deflection equation for this geometry is one example of

symmetric statically determinate analysis of a statically indeterminate lattice

design. Note the symmetric nature of the lattice geometry, loading conditions

and boundary conditions. For previous statically determinate lattice beams,

deflection equations can be explicitely derived for all load conditions; however,
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this and future redundant lattice deflection equations are only derivable for

symmetric lattice designs, loading and boundary conditions. Redundant lattice

analysis is desirable in cases of member failure due to buckling or other types

of mechanical failures.

4.2.1.3 Baltimore

A redundant cantilevered Baltimore lattice with an end load and respective

deflection equations is illustrated in Figure 4.3. The gray highlighted area

represents one bay. Again bending and shear terms are generated by surface

Iongeron members and shear terms are generated by core members. The

added feature of redundancy and the design of two layers offers an advantage

of limited lattice performance in case of member failure. Note the middle row of

horizontal members lie on a neutral axis and therefore carry no load.

4.2.1.4 Baltimore with Fixed Supports

A redundant Baltimore lattice with fixed supports and a mid-span point load

is illustrated in Figure 4.4. This lattice has redundant members and a redundant

support. Mid-span deflections are presented below the geometry. Bending and

shear terms both differ from previous lattice values. This example illustrates

how bay definition and boundary conditions affect deflection equation

coefficients. One bay is defined by the two gray highlighted areas. This lattice

is also designed with a neutral middle row of horizontal members.

4.2.1.5 Soft Warren and Baltimore

A cantilevered soft quadrangular Warren lattice, where the bottom row of

Iongerons have been removed, is presented in Figure 4.5 (a), and a soft
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Baltimore lattice, where all surface members have been removed is presented

in Figure 4.5 (b). These examples are presented to illustrate the flexibility of

lattice design and the capability of the analysis method for nontraditional lattice

geometries. The highlighted gray areas represent typical repeating bays.

Deflection equations for an end are presented below each lattice geometry.

Note, Iongeron and batten core members both contribute third-order terms, and

that the third-order coefficient for both square bay configuration is no longer two

thirds. Hence, the moment of inertia, I, of both lattices has changed. With these

lattice geometries, the calculation of moment of inertia terms and subsequent

Bernoulli-Euler beam deflection equations seem difficult. However, deflection

equations are quite easily derived using strain energy methods.

4.2.2 Neutral-Axis Deflection Principles

Lattice beam deflections are calculated for the neutral axis to emulate linear

elastic beam behavior. The energy principles behind these lattice beam

deflection assumptions and future deflection assumptions are presented on

Table 4.1. Statically determinate lattices are represented on the left side of

Table 4.1 by three Warren lattice beams. The sum of the deflections of the two

lower Warren lattices equals the deflection of the top Warren lattice with two

point loads. Hence, neutral axis deflection assumptions are based on the

method of superposition for statically determinate lattices. The center lattice

represents all statically indeterminate lattices with a point load on a desired

point of deflection coinciding with the neutral axis. This is the basic definition of

Castigliano's second theorem. The fact that this lattice can be solve as a
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statically determinate lattice is ignored. The Warren lattice presented on the

right side of Table 4.1 represents statically indeterminate lattices with point

loads offset from the desired point of deflection. This behavior is not within

the domain of Castigliano's second theorem or the method of superposition,

because the summed lower two lattice deflections due to individual point loads

do not equate to the deflection of an individual lattice with equivalent point

loads. To justify neutral-axis deflection behavior, the principle of

complementary energy is utilized.

4.2.3 Three-dimensional Lattice Beams

Three-dimensional lattice beams are examined as a natural progression

from two-dimensional beams. With the added dimension, beam width is a

consideration. Previous analysis procedures apply, and deflection equations

are presented in the same format.

4.2.3.1 Triangular Cross-section

A Warren lattice beam with a triangular cross-section with an end load is

presented in Figure 4.6. This geometry is generated by assembling three two-

dimensional Warren lattice beams with square bays in the form of a structure

with a triangular cross-section. A deflection equation is presented for the

averaged nodal displacement at the end of the beam. The design has equal

length Iongeron and batten members and equal length diagonal members.

One cell is highlighted in gray. The diagonal members have a Warren lattice

design, and either six or four members connect to a node. Load is equally
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applied to the nodes at the free end of the beam parallel to a selected flat lattice

side. The lattice deflection equation is similar to the deflection equation of the

analogous two-dimensional Warren lattice beam presented in Figure 4.1. This

is because, due to geometry, off-plane members of the beam are not loaded.

Therefore the deflection equation is independent of beam width. A member

count equation is also presented on Figure 4.6. It is a function of the number of

cells in a particular lattice design. Note that it is equivalent to Maxwell's

equations presented in Chapter 3 since each additional lattice cell adds three

nodes.

4.2.3.2 Warren

Deflection equations and the geometry of a three-dimensional Warren lattice

beam with an end load are present in Figure 4.7. One cell is highlighted in

gray. The basic geometry of this lattice is derived by combining four two-

dimensional Warren lattice beams with an interior diagonal member to form a

rectangular cross-section. The deflection equation is one half of a

two-dimensional Warren lattice beam deflection equation for comparable

configurations due to loading conditions. This and the previous three-

dimensional beam deflection equation are independent of beam width.

Although the three-dimensional Warren lattice beam has one redundant

member per bay, it behaves as two uncoupled two-dimensional Warren lattice

beams due to the geometry and interaction of diagonal members. Note, that

redundant lattices require Warren diagonal member geometries and uniform

loads for analysis. A redundant Pratt diagonal member geometry and off-center
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loads complicates three-dimensional deflection equation derivations because

torsion and bending stiffnesses become coupled. Additionally, a member count

equation is also presented.

4.2.3.3 Torsion

Torsional rotation equations are presented in Figure 4.8. They are

developed for two versions of the triangular cross-sectional and square cross-

sectional Warren-type beams to determine diagonal member arrangement

effects on torsional stiffness. Both versions have the same number of members,

just different diagonal member arrangements. The orthogonal tetrahedral or

OTT-type and Warren-type geometry is presented above each lattice. A torque,

consisting of four point loads applied at 90-degree angles for the square cross-

section and three point loads applied at 120 degrees for the triangular cross-

section, is applied to the free end of each beam and corresponding member

loads are used to derive torsional or rotational displacement equations. The

Warren-type triangular cross-section lattice stiffness coefficient is 52.7 % larger

than the OTT-type stiffness coefficient. The Warren-type square cross-section

lattice stiffness coefficient is 70.7 % larger than the O'l-l'-type lattice coefficient.

The Warren-type lattice designs are stiffer because loads bypass batten

members and remain primarily remain in diagonal members. Additional

information on the torsional stiffness and vibration behavior of lattice beams can

be found in Reference 19.
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4.2.3.4 Warren, Two-bay Wide

As previously mentioned, the next logical step in lattice analysis drives us to

wider lattices. Currently the analysis of two-dimensional and three-dimensional

beams is very similar, except for the ability to investigate torsional stiffnesses.

However, lattices two bays wide are of interest because interior surface nodes

are present, and with interior nodes potentially a third dimension is added to a

lattice's deformation behavior. Therefore, the previously defined three-

dimensional Warren lattice is designed two bays wide and with the removal of

selected redundant members analyzed as a statically determinate beam with an

end load. The standard repeating cell, now changes into a repeating cell with

interior nodes. For convenience, all of the lattices presented hereafter have

repeating cells with square surface geometries with symmetric nodal

arrangements; therefore a cell is now defined by the number of component

cubic cells or in terms of length (e.g., two bays wide). Length is therefore

chosen, specifically the number of bays widthwise along an edge of

a cell. This will hopefully simplify the description of various lattice geometries.

Cells are far more versatile than bays for representing and capturing three-

dimensional lattice behavior as will be illustrated in the following lattice

examples.

One version of a cantilevered two-bay-wide lattice beam with three rows of

Iongeron surface members is illustrated in Figure 4.9. This geometry is created

by combining two three-dimensional Warren lattice beams. By removing the

upper two edge rows of Iongeron members, the lower surfaces center row of
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longerons members and selectedbatten members the latticegeometry is

achieved. A deflectionequationforthe latticewithan end load ispresented on

Figure 4.9. The repeatingcellishighlightedingray. Note thatn now

representsthe gray rectangularcell,notone cubic cell,and thereforethis

equation isonly exact foreven 2_ values. This design isweaker than the three-

dimensional Warren latticebeam but stifferthan the two-dimensionalversion. A

partcount equation isalso presentforthislatticegeometry on Figure 4.9. As

can be shown itequals Maxwell's equation. Additionallya maximum member

load value equation ispresented to illustrateanother type of exact lattice

derivation.Note thisisa linearequationforan end loaded beam.

4.2.4 Summary of Lattice Beams

In conclusion, deflection equations for statically determinate lattice beams

have been derived through a fairly simple procedure based on Castigliano's

second theorem. Having member loads, the stresses are readily obtained. Due

to the simplicity of the deflection derivation, the fundamental question of why

this derivation has eluded engineers for so many years comes to mind. One

explanation is that this derivation has been presented and somehow over time

has been omitted from the general literature. Another explanation is that with

an emphasis on closed-form solutions and numerical analyses, these particular

derivations are not sought. In either case, the derivations provide a simple

highly accurate measure of lattice deflection behavior and is an excellent

educational tool for young engineers.
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4.3 Linear Elastic and Lattice Plate Overview

Flat linear elastic plates are structures designed to carry load over an area.

They are usually designed with two expanding major dimensions, length, and

width and one minor constant dimension, depth with a ratio of twenty to one or

larger. They are inherently statically indeterminate and their behavior is usually

represented mathematically with partial differential equations. Solutions

usually involve Fourier series, and Navier [18] conducted initial work and

early derivations in 1820.

Flat lattice plates have some of the same characteristics as elastic plates.

They are inherently statically indeterminate, and they are designed to expand

along two axes. However as with lattice beams, the present theory is not

restricted to large length-to-depth ratios because shear terms are explicitly

obtained for any value of lattice plate depth. To address the issue of statically

indeterminacy, lattice plates are designed with unique geometries. Thereafter,

lattice nodal deflection equations are simple to derive and bending and shear

terms are easily associated with surface or core members. Lattice deflection

equations are obtained by utilization of the statically indeterminate analysis

procedures listed in Section 3.6.

exact and some are approximate.

Hence, some of the following equations are

Equivalent linear elastic plate parameters,

such as D, are derived for lattice plates by comparisons to classic linear elastic,

closed-form plate deflection equations.

As mentioned, flat lattice plates with uniform geometry are statically

indeterminate structures. This is in contrast to lattice beams which can be
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designed as statically determinate or statically indeterminate structures.

Anderson and Nimmo [20] proposed a method for generating free-free

nonuniform lattices derived from a parent Warren lattice geometry. These

nonuniform planar lattice designs are built upon statically determinate lattice

beams. Collins and Lalvani [21] investigated free-free uniform lattices derived

from a parent tetrahedral lattice geometry. They uniformly removed members

from the lattice using a trial-and-error process. However, they were unable to

isolate a statically determinate geometry for analysis. Lake [5] also investigated

this issue and was able to mathematically prove that statically determinate

uniform lattices in two dimensions can not be designed. Hence, it has come to

be accepted that the design of statically determinate lattice structures in three

dimensions is also impossible. Therefore, the design of a statically

indeterminate uniformly expanding planar lattice which can be analyzed is a

required task.

The Warren and tetrahedral lattice designs presented in Figures 2.2 and

2.3 are two commonly studied highly redundant lattice structures; therefore, they

are analyzed herein. Two types of plate studies are conducted on the lattices.

The first study examines plate-like Warren lattices with square geometries.

The primary objectives are to obtain analyzable lattice geometries consisting of

parallel +45-degree members and 0,90-degree members, and to generate

corresponding deflection equations for both. The second study examines

infinitely wide plate-like Warren and tetrahedral lattices. The primary objectives

are to generate analyzable rectangular lattice geometries, and to obtain
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deflection equations and stiffness parameters. Inherently, all planar lattices are

statically indeterminate therefore even component lattices are redundant.

4.3.1 Three-dimensional Warren Lattices with Square Geometries

This study examines plate-like Warren lattices with square planform

geometries. A Warren lattice has parallel 0, +45- and 90-degree members.

To study the highly redundant Warren lattice structure required some

simplification. Hence, it is assumed that the parent Warren lattice can be

treated as a composite laminate consisting of component laminae represented

by the parallel surface members of the lattice. With this initial assumption, the

Warren lattice is divided into two component lattices: membrane and Iongeron.

The parent Warren planform, membrane and Iongeron lattices are presented on

Figures 4.10. Both planar lattice configurations are similar to the beam

configuration presented in Figure 4.5 (a). All sides of both lattices are clamped.

A member count equation for the parent lattice is provided below

Figure 4.10 (a).

A membrane lattice with parallel lines of +45-degree oriented members is

shown in Figure 4.10 (c). The membrane lattice is designed by the removal of

all upper surface Iongerons, core battens and the entire lower surface. This

geometry is serendipitiously derived with the examination of planar Warren

lattice permutations where various groups of members are removed. The

configuration meets structural criteria, since it has redundant members and a

uniform configuration, and analysis criteria, since rational member values can

be obtained through analysis.
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A Iongeron lattice with parallel lines of 0,90-degree oriented members is

shown in Figure 4.10 (b). The Iongeron lattice has the same design as the

membrane lattice except upper surface diagonal members are removed and all

Iongeron members are retained. Core batten members are also retained. This

Iongeron lattice geometry is also serendipitously derived. The Iongeron lattice

configuration has more redundant members than the membrane lattice, and the

configuration also meets structural criteria and analysis criteria.

4.3.1.1 Warren Membrane

Various views of the membrane lattice are shown in Figure 4.11 including

center deflection equations for a center applied point load and planar

distributed load. The upper surface consisting of parallel rows of +45-degree

members is highlighted on the perspective view. A top view of the lattice

showing surface and core members and the four clamped boundary conditions

are presented along with a side view. The side view also illustrates the two

loading conditions. The lower surface of core members, not shown, has a

crimped design since the lower surface has been removed. As mentioned,

Figure 4.5 (a) illustrates a two-dimensional version of the three-dimensional

geometry shown in Figure 4.11. A typical lattice ring is highlighted in gray,

n represents the number of rings in a lattice design, g represents unit length,

P represents a point load, and P' represents a distributed load. For example,

the lattice shown in Figure 4.11 has three rings and therefore n equals three.

The unit length is usually set at one. A standard unit batten, diagonal or

Iongeron member length helps simplify analyses.
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The point-load deflection equation given on Figure 4.11 is of the third order

in terms of the number of repeating rings n. Closed-form solutions for square

elastic plates with point loads are hard to generate do to high stress

concentrations. However, deflection equations for circular plates with center

applied point loads are second order. Therefore, the planar lattice with a

point load does not have a comparable linear elastic structure with a closed-

form deflection solution. Therefore, plate behavior is investigated by examining

load distribution among surface members. After a member-load analysis, it

becomes apparent that point loads do not disperse to surrounding diagonal

members. Loads stay localized and are transmitted along four straight lines of

members to corresponding corners, just as in the two-dimensional beam cases

with point loads. This illustrates the lattice's geometric inability to disseminate

point loads, and hence the reason for the lattice's third-order beam-like

behavior. However, the point load is disseminated among core members and a

second-order equation results.

The distributed load deflection equation given on Figure 4.11 is a fourth-

order equation in terms of the number of repeating rings n. Surface load

dissemination is inherent due to the distributed load field. The equation

corresponds analogously to thin square plate deflection equations. Note, core

members also contribute a fourth-order equation similar to the core members of

the end loaded beams in Figure 4.5 which contribute a third-order equation.
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4.3.1.2 Warren Membrane, Orthotropic

To illustrate the capability and limitations of this procedure for plate-like

lattices; a modified Warren or orthotropic lattice with surface members oriented

at 0,+30,90 degrees is examined. A 0,+30,90 Warren membrane lattice is

illustrated in Figure 4.12. This geometry is a modified version of the previous

planar lattice. A typical ring is highlighted in gray. A point load is applied to the

center node, and the four lattice edges are clamped. Through analysis, only

selected surface member loads can be determined in rational form. However,

these are the same members which produced the third-order term for the ±45-

degree membrane lattice. The presented third-order equation in Figure 4.12 is

generated from these members. As the number of lattice rings increases, the

accuracy of the present solution improves. However, even for a ten-bay truss

the present solution has significant error. This trend is observed in the finite

element results comparison table shown on Figure 4.12.

By comparison, there is an 84-percent difference between the third-order

deflection coefficient term of the 0,+30,90 lattice shown in Figure 4.12 and the

same term of the 0,±45,90 lattice shown in Figure 4.11. This is due to the

different parallel member orientations of the two lattices, and the square

geometry of the 0,±45,90 lattice is the square root of two times larger than the

rectangular geometry for the 0,±30,90 lattice. Since all of the member loads of

the 0,+30,90 geometry are not determined, the lattice may be identified as a

limiting geometry. The study of alternative parallel member cases is useful in

planar lattice design for strength or stiffness requirements.
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4.3.1.3 Warren Longeron

Warren Iongeron lattice geometry is presented in Figure 4.13. Ring and

load definitions previously defined for the membrane lattice are applicable to

the Iongeron lattice. Note, the desired parallel members 0- and 90-degree

orientations presented in the top view. Center deflection equations for point

and distributed loading are presented in Figure 4.13 below the lattice geometry.

A typical lattice ring is highlighted in gray. The point-load deflection equation is

a second-order equation in terms of the number of repeating rings n. This is

comparable to a circular plate deflection equation with a point load. Loads are

distributed throughout the surface of the lattice due to a point load in contrast to

a membrane lattice. Core members also contribute a second-order deflection

equation. Thus, the Iongeron lattice with a point load is stiffer by a polynomial

order than the membrane lattice.

The center deflection of the Iongeron lattice with a distributed load is a

fourth-order equation which correlates with the membrane lattice and elastic

plate theory. Note the coefficient of the Iongeron deflection equation with a

distributed load is larger than the coefficient of the membrane deflection

equation. Longeron weakness is due to core member arrangements. This is

determined by examining the core member deflection equations of both lattices.

This difference illustrates an inefficient load path through core members due to

geometry.
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4.3.1.4 Warren Membrane with Cutout

A planar Warren membrane lattice with a centrally located square hole or

cutout is presented in Figure 4.14. This example represents some type of lattice

damage or cutout for a generic package. If the cutout is not present, as in the

previous lattices, stress distributes uniformly through members over the surface.

With the cutout present, stress reaches a high value around the cutout or is

concentrated. This example highlights the capability of the present analysis

procedure over continuum analysis methods in which a continuous surface is

required. The cutout is equivalent to one ring of the lattice where n still

represents the actual number of rings in a lattice. For example, the lattice

presented in Figure 4.14 has two rings, and therefore n equals two. Calculated

deflection values for point as well as distributed loading represent the nodal

displacement under the four arrows shown in the perspective view. The side

and perspective views illustrate the four point loads. The order of the deflection

equations given in Figure 4.14 are analogous to equations given in Figure 4.1 1.

There is an increase in the third-order coefficient for a point load which is to be

expected because of the cutout's weakening effect on lattice stiffness. A similar

comparison is made between core members. Increases in member load value

around the cutout are not detrimental. The deflection equation for the

distributed load case shown in Figure 4.14 is a fourth-order equation, and it is

comparable to the analogous equation in Figure 4.10 and the result from elastic

plate theory.
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4.3.1.5 Warren Longeron with Cutout

A Iongeron lattice with a centrally located square hole or cutout is presented

in Figure 4.15. Again, this example can represent some type of lattice damage

or cutout for a generic package. The order of the deflection equations is

analogous to equations given in Figure 4.13. There is an increase in the

bending third-order coefficient for a point load which is to be expected because

of the cutout's detrimental effect on lattice stiffness. A similar comparison can

be made between core members. The deflection equation for the distributed

load case given in Figure 4.15 is a fourth-order equation, and it is comparable

to analogous equation in Figure 4.12.

4.3.2 Summary of Square Three-Dimensional Lattices

The previous examples illustrate a simple way of generating a highly

redundant plate-like Warren lattice with a square geometry. The previous

examples also illustrate several statically indeterminate lattices which through

symmetric loading, geometry and boundary conditions have tractable member

loads. This is unique in that previous reports have cast doubt on the probability

of obtaining a uniform lattice which can be analyzed using statics. Therefore,

the logic hereafter is that closed-form analysis of such uniformly expanding

lattices is possible.

Additionally, the previous examples illustrate a simple way of determining

and examining the bending stiffness parameters of a highly redundant square

lattice plate. The parameters are representative of linear elastic plate

stiffnesses. From the examples, the Iongeron lattice primarily provides elastic
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uniform surface plate stiffness for point loads as well as distributed loads. In

contrast, the membrane lattice contributes a limited amount of surface radial

stiffness for a point load and traditional plate stiffness for a uniform load. Core

member stiffness parameters for both component lattices are consistant with

classic plate theory. However, for global behavior relative to the parent lattice,

they only contribute to shear stiffness, a first-order term.

4.3.3 Three-dimensional Infinitely Wide Planar Lattices

A second study is conducted on the redundant Warren and tetrahedral

plate lattices to obtain plate deflection equations and stiffness parameters. To

simplify plate analysis, the lattices are idealized and designed as infinitely wide

lattice plates experiencing cylindrical bending while subjected to an end load.

To acquire cylindrical bending, lattice boundaries consist of one free side, one

clamped side and two guided sides. Members on the two guided edges have

half of the area of interior members and half the applied load. The lattice, as in

the previous study, is divided into two lattices. However, upper and lower

surfaces are retained since global bending behavior is being investigated. This

is in contrast to the previous square planar lattice study.

4.3.3.1 Warren

A rectangular version of a planar Warren lattice is illustrated in Figure 4.16

which has been modeled as a very long and narrow plate or an infinitely wide

plate. Boundary conditions consist of one clamped side, a free opposite

side, and two sides with rollers. With a distributed end load applied to the free
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edge, the lattice theoretically deforms as a cylindrical surface. These

assumptions for design, in effect, eliminate two terms from the governing partial

differential equation and yield a beam-like ordinary differential equation. With

this equation, a D term or equivalent plate stiffness for a lattice is derived.

Two component lattices, a primary Warren Iongeron lattice and a membrane

octahedral lattice, derived from the parent lattice are presented to the right of the

parent Warren lattice.

The primary 0,90 Iongeron lattice is an expanded version of the three-

dimensional Warren beam presented in Figure 4.7. Note that both upper and

lower surfaces have been retained. Its load transfer behavior is unique in that

member loads per row of Iongeron are uncoupled. Therefore, the lattice

uniquely behaves as if its Poisson's ratio equaled zero. The lattice deflection

equation due to a uniform end load given in Figure 4.16 is represented by a

third-order equation in terms of the number of bays n. The bending term is

identical to the two-dimensional Warren lattice deflection equation. However,

shear terms differ due to varying diagonal member arrangements.

The membrane octahedral lattice is located below the Iongeron lattice on the

right of Figure 4.16. It represents the arrangement of parallel +45-degree

diagonal members. Again, note that both the upper and lower surfaces have

been retained. This geometry is achieved by removing all Iongeron and batten

members from the parent Warren lattice. The lattice bending loads are

coupled and, hence for analysis and rational member loads, square cell

geometries have to be generated with increasing lattice width. The resulting
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deflection equation is shown below the membrane octahedral lattice. The

deflection equation is of the third-order and independent of the lattice width.

By inspection, the coefficients of the third-order deflection term equations of the

membrane lattice are larger than those of the Iongeron lattice therefore the

membrane lattice is weaker than the Iongeron lattice due to the arrangements of

surface members.

In contrast to the lattices presented in Figures 4.11 and 4.13, both of these

lattice deflection equations are of the same order, and both lattices have

respective upper and lower surfaces. To derive the redundant lattice

deflection equation, these deflection equations are inverted and summed. A

simpler example is illustrated in Section 3.6. The resulting redundant planar

deflection equation is presented on Figure 4.16 above the parent lattice. With

equation (3), a stiffness term D is generated from the deflection equation terms

highlighted in gray. To verify the presented D value, it is compared to D terms

form earlier lattice reports; and the comparison is presented in a later section of

the present paper. The additional terms in the deflection equation are shear

terms.

Deflection results generated by the closed-form deflection equation are

compared to results generated in EAL for validation of the analysis procedure

and generated deflection values. Differences between the present approach

and the finite element results occur due to the assumption that the Warren

lattice can be decomposed into a Warren Iongeron lattice and an octahedral

lattice with no interaction. Results are presented in the table on Figure 4.16
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below the parent lattice. The percent error between the two values is also

presented as the number of bays increases from two to 20. The percent error

decreases as the number of bays increases; therefore, the procedure and

resulting values are validated.

4.3.3.2 Tetrahedral

Tetrahedral lattices are designed in planar rectangular or circular form.

Circular hexagonal shapes are desirable as support structures for land or

space-based reflectors. Another unique feature is the ability to construct the

lattice with equal length members.

height of square root of two thirds.

This geometry is obtained at a planar lattice

The tetrahedral lattice presented in Figure

4.17 is designed with equal length members and a rectangular geometry. The

O,:l:60-degree tetrahedral lattice is divided into two statically determinate lattices

as shown on the right side of Figure 4.17. The primary Iongeron lattice

represents the O-degree angled members, and the isolated diagonal members

represent the +60-degree membrane lattice.

The tetrahedral Iongeron lattice is analogous to the Warren Iongeron lattice.

Note, selected surface diagonal members are removed to prevent redundancy.

The Iongeron lattice generates a third-order deflection equation shown on

Figure 4.17 similar to the deflection equation obtained for Warren lattices 0,90-

angle lattice. However, the Iongeron tetrahedral lattice deflection equation also

generates a second order moment term, which makes the deflection equation

dependent on width on the number of bays in the width direction of m. This is

due to coupling between torsion and bending stiffnesses of this lattice design.
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The second :l:60-degree membrane lattice also generates a third-order

deflection equation. Its deflection equation is independent of plate width. To

derive the redundant lattice deflection equation, these deflection equations

are inverted and summed with a compatibility requirement. The final deflection

equation is presented in Figure 4.17 above the redundant lattice geometry. The

width term of the Iongeron lattice is included in the plate deflection calculation.

A bending stiffness term, D is generated from the terms highlighted in gray and

is presented below the deflection equation on Figure 4.17.

4.3.4 Comments on Linear Elastic Plate and Lattice Plate Theory

Both Warren and tetrahedral plate-like lattices are analogous to classic

elastic plates. Therefore, both Warren and tetrahedral redundant deflection

equations are analogous to classic plate deflection equations. The governing

partial differential equation of an elastic isotropic uniform plate with a uniform

load is:

_)"w ()4w ()4w P (13)
o_x-----_ + 2 o_x2_2 + -_- =

Assuming cylindrical bending equation (13) reduces to

o_4w p
= -- (14)

_4 D

The solution of equation (14) with an end load is fairly well known and is

represented by:

w(L) = 13p" (15)
3D

By comparing equation (15) to the Warren and tetrahedral deflection equations

a D stiffness value is obtained. Table 4.2 contains a general comparison of the
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stiffness terms derived in this study and previously derived stiffness terms. The

deflection equations of the parent Warren lattice and the tetrahedral lattice are

presented in the top box along with the general stiffness coefficient equations

of the Noor, Anderson, and Greene [2], the study of Warren or Hexagonal

lattices, and the study by Mikulas, Bush, and Card [1] of tetrahedral lattices.

Stiffness parameters for lattices with specified heights are presented in the

center box. Since the Warren lattice cell geometry of this study corresponds to

the cell geometry of the Noor, Anderson, and Greene study [2], stiffness terms

match exactly. The tetrahedral cell geometry between this study, the Noor,

Anderson and Greene [2] and Mikulas, Bush and Card [1] do not match.

Therefore a length modification is required, subsequent stiffness values match

exactly. This validates the present analysis procedure for obtaining stiffness

values for planar lattice structures. Additionally, the planar deflection equations

have shear stiffness terms which the other studies ignored. Hence, these

analysis procedure provides highly accurate measure of static lattice behavior.

A general view of each type of lattice cell is presented on Figures 4.16 and 4.17

and at the bottom of Table 4.2.

4.4 Shell-like Overview

Flat lattice beams and plates have been the focus of this study so far. Now

the analysis is extended to curved surface lattices or shell-like lattices.

Examples of shells include pressure vessels, airplane wings, pipes, domes and

fuel tanks for rockets. Governing partial differential equations for shells usually
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have trigonometric solutions, and Kirchhoff and Love derived the relevant

equations.

Rings are statically indeterminate beams and therefore are analyzed with

energy theorems. The governing differential equation for radial expansion of a

thick ring with an internal pressure [22] is presented by

d2u 1 du u

dr----E + - 0 (16)r dr r2

The solution of equation (16) where the constants A1 and A2 are determined by

boundary conditions is given by

u -- Air + A2/r

(1 + v)(1 2v) Pir_
A 1 --- 2 2

E ro - r i

(1 + V) Pir_r2o
A 2 = 2 2

E r o - r i

(17)

In solid mechanics, rings under pressure loads expand due to axial tension

and transverse shear stresses.

4.4.1 Two-dimensional Ring-like Lattices

Lattice rings are two-dimensional statically indeterminate structures, and for

this study, Castigliano's second theorem is used in conjuction with simple

mathematical techniques to determine radial ring expansion equations. Rings

are studied because of their simple nonlinear axially symmetric geometries.

Lattice ring geometry is simplified by modeling inner and core members with

a unit length, t. Outer perimeter member length is a variable (decreases as bay
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number increases). Two parent lattice geometries, with square and triangular

bays, are studied in cylindrical coordinates (r, 6) with uniform pressure loads.

Each parent ring is divided into less redundant structures and constrained for

radial expansion. With these assumptions, nodal expansion equations are

derived.

4.4.1.1 Triangular Bay

The parent triangular bay ring geometry is presented on the top left side of

Figure 4.18. It consist of a series of inverted and standard isosceles triangles.

The lattice ring is divided into two component lattices with two different

loading conditions. A typical repeating bay of a component lattice is highlighted

in gray in Figure 4.18 (a). A uniform load applied at the nodes is also

presented. The rings in Figures 4.18 (a) and 4.18 (b) are representative of

classic thin-walled rings since loads only reside in respective outer and inner

surface members. These member loads produce a one over sine squared

expansion equation for the radial expansion of a lattice ring with n bays

multiplied by member length as indicated in Figure 4.18. This equation is

derived by inspection through simple geometric relationships. Trigonometric

functions in contrast to polynomials are generated due to the lattice cylindrical

geometry. The exact expansion equation for each lattice is presented adjacent

to the respective geometry on Figure 4.18. The ring in Figure 4.18 (c) is

representative of a thick ring with transverse shear effects. Its expansion

equation is solved using the following steps: (1) isolating a bay; (2) generating a

representative stiffness matrix in cylindrical coordinates; (3) applying symmetric
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loading conditions; (4) matrix inversion; and, (5) nodal displacement

acquisition. The cosine term represents the transverse shear effect in the core

members, and the cosine times sine term is associated with axial tension.

4.4.1.2 Square Bay

The square bay lattice ring is presented in Figure 4.19. This lattice is divided

into a core member lattice shown in Figure 4.19 (a) and a Vierendeel lattice

shown in Figure 4.19 (b). The Viereendeel member loads are calculated by

solving three simultaneous equations, while the double-laced lattice member

loads are calculated by solving two simultaneous equations as presented on

Figure 4.19. Again trigonometric expansion equations result. Note that as bay

number approaches infinity, surface and core member loads of the lattice in

Figure 4.19 (a) approach infinity, this is representative of a thin-walled ring. In

contrast, surface member load values in the Vierendeel lattice shown in Figure

4.19 (b) approach infinity while core member loads approach a constant value.

This is representative of a thick ring with transverse shear effects included.

4.4.2 Curved Frame or Statically Determinate Circular Arch

A curved frame is typically a structure which spans an area and acts in

bending as a beam with additional force components of transverse shear and

axial tension or compression. A circular symmetric curved frame (arch-like)

lattice is presented in Figure 4.20. The lattice is pinned on the right end and

simply supported on the left end. This lattice is statically determinate. A

typical repeating bay, represented by the outer perimeter members, has a unit

length of I. The length of the inner members varies for different n values. The
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curved frame presented on Figure 4.20 has a n value of 12. A point load is

applied to the crown of lattice.

As a result of loading, the lattice incurs compressive loads in outer surface

members and tension loads in inner surface members. As with linear beams

and plates shear and axial terms are determined explicitly. Since the lattice is

statically determinate, exact trigonometric equations for member loads (m.l.) are

tractable. Load equations for the lower two outer surface members are

presented on Figure 4.20. Exact member load equations become very complex

as the number of bays increases. Therefore to acquire a global curved lattice

deflection equation due to a point load an approximation equation is derived

instead of an exact equation. The derivation of the deflection equation assumes

a lattice of many bays. With this assumtion cosine terms reduce to rational

numbers and sine terms approach zero. A table consisting of outer surface

member loads as n approaches a large value is presented on Figure 4.20. With

member loads represented by rational numbers, the deflection derivation

procedure of Section 3.5 is utilized to generate a deflection equation. The

deflection equation of the curved lattice is presented at the bottom of the figure.

Note, that the deflection equation is of the fifth order, and that the traditional

solid mechanic curved frame deflection equation is of the third order. The

increase of the order of the deflection equation is due to the geometry of the

lattice. Note, the single layer of perimeter nodes which is unique in lattice

design. The geometric effect is illustrated with an isolated repeating structural

unit on the figure where the primary load is uniquely enhanced with the
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secondary load condition. Hence, the curved lattice is weaker than the

traditional fourth-order frame.

The unique behavior of the curved frame lattice represents a new class

of structures referred to as soft lattices. More information on soft lattices with

exact solutions will be presented in Section 4.5.

4.4.3 Spheres

Lattice spheres have another type of curved surface, which is of interest for

lattice analysis. By definition, a sphere is a three-dimensional surface for which

all points of which are equidistant from the center. This definition complicates

lattice sphere analysis because only three polyhedron geometries with equal

member length exist.

The three polyhedron geometries are presented in Figure 4.21 along with a

generic n-sided lattice where n is very large. Uniform internal point loads are

applied to lattice nodes of the three polyhedron, and EAL results and geometric

values are presented in the table on Figure 4.21. The first column lists the

number of sides associated with each lattice. The second column lists the

member load associated with each lattice, note all member loads are identical.

To calculate theoretical member loads of lattices with larger bay numbers, the

member load equation, presented on Figure 4.21 is postulated. It is generated

by relating the three member loads of the presented polyhedron and the radii,

presented in column four of the table. Column five lists the number of members

in each lattice and column six lists the number of vertices. Both are used along
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with the member load to derive a spherical expansion displacement equation.

The resulting equation is highlighted in gray. To validate the expansion

equation, a comparison is made between an infinite n-sided lattice and a linear

elastic sphere with an internal pressure load. Poisson's ratio is assumed to be

one third [1]. Resulting lattice and solid mechanic terms are comparable and

provide some insight into the behavior of a spherical lattice with uniform internal

point loads.

4.5 Soft Plate-like Lattices in Three-dimensions Overview

The fourth group consist of uniquely designed cantilevered planar lattices in

three dimensions. Lattice behavior so far has been analogous to traditional

elastic structures such as beams and plates. Even shell-like lattices have

analogous structures in solid mechanics and predictable linear elastic

expansion behavior. If Figure 4.9 is revisited, and the removal of more

members is initiated, behavior unique to pinned soft lattice structures occurs.

4.5.1 Sixth-Order with Surface Longerons

A cantilevered modified two-bay wide lattice with a top surface of two rows of

Iongerons and battens is shown in Figure 4.22. The lower surface consist of a

±45-degree arrangement of diagonal members; diagonal core members

separate the two surfaces. The repeating cell has been isolated for

observation, and another one is highlighted in gray. This lattice has an end

load applied to the five exterior nodes. After analysis, a fifth-order term arises in

the deflection equation as given in Figure 4.22 due to the diagonal members.
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This is unique in that traditional end loaded cantilevered beam deflection

equations are of the third order. However, examination of the lattice cross

section, in contrast to the Warren beam presented in Figure 4.7, illustrates a

very weak geometry for load transfer in bending. In general, a cantilevered

elastic beam deflects downward while widthwise cross-sections remain plane

and rotate. To contrast, a cantilevered soft sixth-order lattice geometry induces

artificial side moments along the lengthwise edges which inwardly warp the

lattice and create an exaggerated Poisson's ratio effect. Hence, nodes deflect

downward, widthwise cross sections remain plane and rotate, and lengthwise

edge nodes rotate inward. This additional rotation leads to the addition of a

fifth-order deflection term. To parallel fourth-order beam theory in solid

mechanics, lattices with fifth-order deflection equations due to an end load are

referred to as soft sixth-order lattices. An equation for the number of members

is also presented in Figure 4.20. Note, Maxwell's equations are satisfied.

4.5.2 Sixth-Order Consisting of Diagonals

The removal of the two remaining rows of Iongeron members and

batten members and associated nodes, gives a lattice of the configuration in

Figure 4.23. This lattice consist solely of diagonal members. A repeating cell is

isolated for observation and is highlighted in gray on the top view shown in

Figure 4.23. It also has a fifth-order bending term in the deflection equation due

to the geometry of upper and lower diagonal surface members. Again, the fifth-

order deflection equation is generated due to induced side moments which in

turn produce an exaggerated Poisson's ratio effect. A deflection equation for
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loading in the x-y plane is also presented in Figure 4.23. Note that this lattice

deflection equation is of the third order. Therefore, soft lattices presented herein

have a weak axis and a traditional beam-like stiff axis.

Work on additional designs of soft lattices is presented next to illustrate

the capability of the strain energy analysis and to better understand soft lattice

mechanics. Note that cross sections of the soft lattices remain plane during

loading and that if the sides of the lattices are simply supported a third-order

deflection equation results.

4.5.3 Sixth-Order Symmetric

The next soft lattice is designed with a symmetric geometry and a neutral

load plane. The lattice and associated deflection equation for an end loaded

lattice is presented in Figure 4.24. The lattice geometry is four bays wide and

two bays deep. Note, the core member geometry has changed to consist of

perimeter diagonal members. One cell is isolated and selected parts are

shown. Another cell is highlighted in gray on the top view. The repeating cell

consist of four cubes of diagonal surface members with a midplane of Iongeron

members. During loading midplane Iongeron, member loads are eliminated as

anticipated and ar_ exaggerated Possion's ratio effect occurs as in the previous

examples. Top surface member loads and bottom surface loads are identical.

With the determination of the neutral load plane and a symmetric geometry,

loads can be applied uniformly and behavior is quantified in a truer sense, in

contrast to the asymmetric soft lattices shown in Figures 4.22 and 4.23.
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4.5.4 Sixth-Order Symmetric Soft Lattices With Distributed Load

Next, the soft symmetric lattice is examined with a distributed load. The

deflection equation for nodal deflection along the length of the lattice is

presented in Figure 4.25. The deflection equation is of the sixth order due to

the same factors of previous lattices. One way of investigating the associated

governing differential equation of the lattice is by differentiating the

displacement equation six times. Differential equations are of interest for

lattice buckling or vibration behavior.

4.5.5 Eighth-Order

Another asymmetric soft lattice is derived by removing the bottom half of the

symmetric soft lattice and expanding by two bays. This lattice is six bays

wide and one bay high. The repeating cell of this lattice and associated

deflection equation for an end load are presented in Figure 4.26. With a

uniformly distributed end load, this lattice exhibits seventh-order deflection

behavior due to the geometry of the top surface diagonal members. This

behavior is a result of the top :l:45-degree and bottom 0,90-degree member

orientations which induce side moments and widthwise axial compression.

Therefore, a seventh-order deflection equation results. An eighth-order

equation is presumed to occur for a distributed loading case. Again, to parallel

fourth-order beam theory in solid mechanics, lattices with seventh-order

deflection equations due to an end load are referred to as eight-order lattices.
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4.5.6 Eighth-Order, Clamped On Two Sides

The last soft lattice is designed to illustrate softness along the width of a

lattice in contrast to the length. The lattice geometry and repeating cell are

shown in Figure 4.27. It is derived from the previous lattice by removing batten

members from the lower surface and expanding by two bays. The core member

geometry is also changed back to the corrugated style of the planar Warren

lattice. Therefore, the lattice is eight bays wide, one bay deep, and has the

traditional corrugated core member arrangement as shown in Figure 4.23. The

lattice has a :!:45-degree top surface and single rows of Iongeron members on

the bottom surface. Hence, the bottom surface is the weakest component of the

lattice. Member load values are not deterministic with the application of a

distributed end load. However with the application of two opposing point

loads as illustrated or by constraining the neutral vertical nodes of the x-z plane,

member load values are obtainable. The resulting seventh-order deflection

equation is presented in Figure 4.27. To appreciate the softness of this lattice

note that classic beams, and the previous fifth- and seventh-order lattices have

first-order torsional equations. Note, with the removal of batten members from

the lower surface lattice loads have to travel the length of the lattice in contrast

to traveling to the closer constrained side. With a seventh-order deflection

equation for a point loaded lattice with two constrained sides, a cantilevered

version potentially requires a very high-order polynomial equation to capture

bending behavior.
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4.5.7 Overview of Soft Lattice Displacement Fields

The derived soft lattice behaviors are compared and summarized on Figure

4.28. Classic two-dimensional beam theory dictates that beams deflect and

rotate due to vertical loading. This is illustrated in Figure 4.28 (a). The

lattice geometries presented in Figures 4.22 through 4.25 experience an

additional inward rotational degree of freedom due to loading. This behavior is

illustrated in Figure 4.28 (b). This effect occurs in the x-z longitudinal,

lengthwise plane of symmetric or asymmetric lattices. Stiffness remains of the

third order on the opposite axis and of the first order during axial loading. With

a modification to the lattice presented in Figure 4.25, the lattice presented in

Figure 4.26 is achieved. This lattice is unique in that it has a seventh-order

bending term due to an addition of z-axis compression as a result of load.

Deflection, rotation, and inward rotation behavior are still present as in the

previous lattices. All nodal behaviors are presented for this lattice in Figure

4.28 (c). The seventh-order bending lattice is the last lattice where a bending

equation is derived. To further illustrate lattice softness design a lattice is

examined in torsion. Seventh-order equations result, in contrast to first-order

equations for previous designs. This illustrates a severe weakness in torsion

and presumably also in bending. The two constrained sides and lattice

behavior are presented in Figure 4.28 (d).

4.5.8 Soft Lattice Mechanics

In order to gain more insight into soft lattice mechanics, related geometric

deformation relations are discussed. Strain energy expressions are utilized to
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derive deflection equation throughout this paper. Three-dimensional strain-

displacement relations reduce to the following set of two-dimensional relations

for planar material

_u
_, = _- (lsa)

_v
e, = -_. (18b)

oy

_v
E, = _--_-= 0 (18c)

_v
% = _ + 08d)

axoy

o_w _u

_ = _ + a_ = 0 (18o)

o_w o_

_" = .y_ + 2-; = o (180

Note these expressions are also referred to as the kinematic relations [12].

These expressions are valid for soft lattice structures. To gain insight into

bending behavior Equations (18e) and (18f) are integrated giving

_v
U = --Z_

o_x

V-" --Z_
_y

(19 a-b)

These strain displacement equations are invalid for soft lattice structures.

Hence, the difference between elastic materials and soft lattices is identified.
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This leads one to postulate that soft lattices uniquely represent the material

zone between membranes which have in-plane stiffness and no out-of-plane

stiffness and plates which have in-plane stiffness and out-of-plane fourth-order

bending stiffness.

4.5.9 Comments on Current and Theoretical Soft Lattices

Table 4.3 lists some key features and future work associated with soft lattices

relative to composite theory. Composite theory is one of many ways of

describing the surface member orientation of soft lattice cells. Note lattice

behavior is not being compared to composite behavior; however, some type of

relationship is desired between member orientation and higher-order deflection

equations.

A traditional lattice with parallel members oriented at 0,±45,90 degrees is

presented in row one of Table 4.3. A fourth-order deflection equation

results with distributed load. In composite theory, such lamina ply

arrangements form an antisymmetric angle-ply laminate. By definition, an

antisymmetric angle-ply laminate has laminae oriented at +a degrees to the

laminate coordinate axes on one side of the middle surface and corresponding

equal thickness laminae oriented at -a degrees on the other side.

A soft lattice with ±45-degree surface member angles is presented in row

two, where a sixth-order deflection equation results with distributed load. Such

lamina ply arrangements are also create an antisymmetric angle-ply laminate.
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Additionally in the third row, a soft lattice with +45-degree upper and 0,90-

degree lower member angles is presented. This geometry is quasi-isotropic

(with member areas properly balanced as in Ref. [5]) and defined as

antisymmetric angle-ply laminate. The term quasi-isotropic is used to describe

laminates that have essentially isotropic extensional stiffnesses, all in the same

directions. The next lattice geometry has :1:45, 90-degree member

arrangements. This type of composite laminate is described as a symmetric

angle-ply laminate. A symmetric angle-ply laminate exhibits no coupling

between bending and extension therefore B=jterms equal zero. A deflection

equation for bending load is not presented for this lattice due to difficulty in

generating rational member loads. Whether this is due to the symmetric

geometry, in contrast to the antisymmetric geometry of previous lattice

geometries, is unknown. The +45, 90-degree lattice geometry is derived by

rotating the previous lattice by 90 degrees and adding sufficient bays. A zero

angle lattice and a 0, 90-degree lattice are theoretically created by modifying

the :1:45, 0 and :1:45, 90-degree lattices. The acquisition of rational member

loads is an uncertainty. However, these are the limiting cases for lattices since

single-layer lattices are not kinematically stable. To conclude, Table 4.4 is

presented as a guide of the present study and for future work on soft lattices.

Just as in two-dimensions, a fourth-order deflection equation for uniform loading

is the limiting case; and a similiar limiting case should exist for three-

dimensional lattice structures. The derivation of this limiting case is of great

interest for the study of lattices and three-dimensional linear elastic materials.



66

Symmetric laminates are desirable for several reasons. First, B_jterms equal

zero eliminating coupling between bending and extension. Second, symmetric

laminates do not have a tendency to twist from thermally induced contractions

that occur during cooling following the curing process.

In contrast, many physical applications of laminated composites require

nonsymmetric laminates to achieve design requirements. For example,

coupling is necessary to manufacture jet turbine fan blades with pretwist, and

coupling is desired for heat shields which are heated on only one side to

prevent warping [11].

4.6 Vibration Overview

The natural free vibration behavior of some lattice structures (e.g., antenas,

solar arrays) is of great interest because these systems are designed to be

lightweight and to incur low or minimal loads. The following vibration

examples are simple but provide insight into lattice axial and ring vibrational

behavior. Additionally, the domain of the analysis is extended from exact strain

energy analysis to exact kinetic energy analysis.

4.6.1 Rods

Exact eigenvalues are obtained for fixed-end, rod-like lattices and presented

on Figure 4.29. The lattices are analyzed as discrete systems with an axial

degrees of freedom and point masses at the nodes. For this free harmonic

vibrational study, one lattice member is represented by a two by two stiffness

matrix and a two by two lumped mass matrix. The analyses consist of
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generating a global stiffness and mass matrix, characteristic equation, and

the associated eigenvalues. A series of exact eigenvalues are calculated this

way for lattices with two, three and more members. Eigenvalues are presented

for lattices with two, four, and eight members on Figure 4.29. Through

observation a recurrence relationship for these eigenvalues and higher

multiples of two is presented. Likewise, a similar relationship exist for lattices

with three, nine, 27, and higher multiples of three members. The recurrence

relationship enables the prediction of higher eigenvalues without solving

higher nth-order characteristic equations, and they provide some insight

into the vibrational behavior of lattices. The Young's modulus multiplied by

area and divided by length ratio, represented by a on Figure 4.29 is a variable,

for simplicity mass is a constant.

A rod-like lattice with two fixed ends is also examined and presented on

Figure 4.29. Eigenvalues are presented for lattices with four, and eight

members. The eigenvalues of the four member lattice equal the eigenvalues of

a lattice with two members and one fixed end. The third eigenvalue is a, the

material and geometry parameter. The eigenvalues of the eight member lattice

equal the eigenvalues of the two and four member lattices and a. Therefore a

rod lattice with two fixed ends and n members generates all previous

eigenvalues of lattices with one fixed end. With this observation, a recursion

relationship is presented for eigenvalues as a function of two times the number

of members plus one on Figure 4.29.
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4.6.2 Lattice Beams

The lattice vibration study is continued by investigating the axial vibration

of the quadrangular and Warren lattice beams with one side fixed. Batten

members are removed from both lattices. Both lattices are presented in Figures

4.30 (a), and (b). Eigenvalues and the recursion relationship generated by the

quadrangular lattice beam are identical to the rod-like lattice when the number

of bays equals the number of members. Repeating eigenvalues consisting of

the material and geometry parameter are also generated; they are a result of

the diagonal members. Eigenvalues for four, eight and 16 bay configurations

are presented along with the recursion relationship on Figure 4.30.

The Warren lattice also generates eigenvalues and a recursion relationship

identical to the rod-like lattice. However, diagonal members generate an

additional series of rod-like values, where the material and geometry coefficient

is divided by two. Note, lattice behavior is derived with specific material and

geometric properties, listed at the bottom of Figure 4.30.

4.6.3 Lattice Ring

The natural extensional vibration of a ring is another simple one dimensional

problem encounter in the study of material behavior. The studied lattice ring is

presented in Figure 4.31. Ring boundary conditions, and member length

assumptions remain the same. The first mode of vibration for a lattice ring is

uniform expansion or contraction. Since a ring consists of repeating bays each

bay's nodal radial displacement is identical. Therefore, the analysis of one bay

for extensional vibration represents the analysis of the lattice ring. A selected
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bay highlighted in gray consisting of three members is presented in Figure 4.31.

To analyze the lattice bay, outer member lengths are represented by

trigonometric functions. Core members have an assumed length of one unit. A

three by three stiffness matrix is derived for the three members in cylindrical

coordinates, and a lumped mass matrix is also formulated. A characteristic

equation is calculated from the stiffness and mass matrix. The lowest solution

of the characteristic equation represents the first eigenvalue of the lattice ring for

n-bays. This eigenvalue equation is presented in Figure 4.31. Associated

parameters are also defined. The equation is analogous to a classic ring

vibration equation, in contrast to the lattice rod recursion relationships. A table

of lattice ring parameters and results are presented due to the complexity of the

eigenvalue equation. A similar equation can be derived for a circular lattice

with square bays. Note, that a lattice of six bays has a higher frequency than

one of four bays due to geometry.



CHAPTER V

FINITE ELEMENT FORMULATIONS FOR SOFT LATTICES

5.1 Overview

The finite element method is a common and computationally useful

numerical method for solutions of complex structural problems. The method

simplifies structures which may include beams, plates and/or shells into

discretized elements and represents them mathematically by matrices. Beam

and frame elements are presented in Figure 5.1 above their respective finite

element matrix representations.

Elastic and lattice beams have previously been defined. In the method of

finite elements a beam is represented by a horizontal element with two nodes.

Each node has two degrees of freedom, displacement and rotation. Hence, the

finite element matrix representation is a four by four matrix. Since one beam

element only has two nodes, several beam elements are utilized to represent

true structural behavior under distributed or combined Ioadings. Shear terms

are usually not included in the basic matrix derivation.

Frame elements are similar to beam elements in that they have two nodes

which deflect and rotate. Additionally frames have axial deformation and varied

rotational orientations. This angle is represented by alpha on the figure.

Hence, the finite element matrix representation is a six by six matrix. Again

70
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sinceone frame element only has two nodes, severalframes are utilizedto

representtruestructuralbehavior.

The displacement finiteelement formulationof a linearelasticbeam or frame

consistoffourbasicsteps:I.)discretizationofthe structuraldomain; 2.)

derivationof variationalformulationfrom governing differentialequations;3.)

derivationof shape or interpolationfunctionsbetween element nodes; and, 4.)

generationof stiffnessand forcematrices.To initiateStep 2, a selectedlattice

displacement equation has to be differentiatedto generate a governing

differentialequation. However, thisstep eliminateslower orderterms and the n

variable.To retainthese terms and maintainthe studiesemphasis on

exactness, another finiteelement formulationisutilized.

5.2 Exact Soft Finite Element Matrix Formulation

The following three steps outline an exact lattice finite element matrix

formulation. First, a lattice displacement equation is derived for every degree

of freedom, boundary condition and load condition desired. These equations

are grouped to form a vector. Second, a vector consisting of the three applied

loads is factored from the displacement equations. Third, a stiffness matrix is

generated by inverting the lattice equation matrix. These three steps are

utilized in deriving a representative stiffness matrix for a fifth-order cantilevered

lattice beam with an end load. The previously mentioned three steps relative to

the beam are presented in Figure 5.2. The exact displacement matrix for

vertical displacement, widthwise rotation, and lengthwise rotation is presented

at the top of the figure. The center matrix contains a truncated displacement
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matrix where lower order terms are not used for brevity. Next, a load vector is

factored off of the displacement equations. The displacement matrix is inverted

and presented in Figure 5.2 (c) as the K-stiffness matrix of a soft cantilevered

beam. The formulation presented in Figure 5.2 (c) is analogous to the gray

highlighted lower right hand quadrant of the global beam element stiffness

matrix presented in Figure 5.1.

The lattice beam stiffness matrix presented in Figure 5.2 (c) is transformed

into a local frame matrix with the addition of an axial stiffness value and

presented as matrix k' at the top of Figure 5.3. The local frame matrix is

transformed into a global frame matrix through the use of a transformation

matrix, L. This step is illustrated in the middle of Figure 5.3. The resulting

global lattice frame matrix is presented at the bottom of Figure 5.3. This matrix

formulation is analogous to the gray highlighted lower right hand quadratic of

the frame element presented in Figure 5.1. Notice that n values have been

retained and that through this formulation as many displacement terms are

retained in the original displacement matrix as desired for accuracy. This

element derivation validates the present formulation assumptions and provides

new insight into lattice behavior under combined loading.

5.3 Sixth-order Verification

The soft lattice beam-like and frame-like finite element matrixes presented in

Figure 5.3 are verified by comparison to exact results generated by EAL as

given in Table 5.1. Three test cases are presented for n values of two, five, and
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ten. An n value of two verifies shear behavior while an n value of ten verifies

bending behavior. The four variables of interest are vertical deflection along the

z-axis, traditional rotation in the x-z plane, inward rotation in the y-z plane, and

axial displacement along the x-axis.

The first test case is representative of a cantilevered soft beam with a

vertically applied end load. The end load has a magnitude of one unit. Matrix

generated deflection, x-z rotation and y-z-rotation values are presented in the

top table of Table 5.1. In addition, values generated by EAL are also presented.

The percent error between values represents the error in the matrix coefficients.

In bending, percent errors range from three point six percent for two bays to

zero for ten bays. Therefore, matrix solutions for bending due to an end load

are validated. For rotation in the x-z plane, errors range from one point one to

zero. Hence, matrix solutions are validated, and similar results occur for

rotation in the y-z plane.

The second case represents a cantilevered beam with combined loads in

the three degrees of freedom. The combined loads consist of a ten unit vertical

load, a ten unit rotational torque and a ten unit widthwise torque. Similar to the

end loaded lattice, the percent errors between matrix and EAL generated

values for combined loads are acceptable for bending, and both rotations as

given in Table 5.1. However, the percent error between axial extension values

slightly increases as the number of bays increases. This is due to an inexact

calculation for axial displacement. Horizontal, Iongeron members are stressed

during axial loading; in contrast, during bending and rotation they lie on a
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neutral plane. To lessen the error a displacement analysis similar to the axial

displacement problem presented in Section 3.6 would have to be conducted.

The last case represents a frame-like soft lattice oriented at forty-five degrees

with an end load. The end load is applied in the vertical direction and has a

magnitude of ten units. Again generated percent errors between results

obtained using the present matrix formulation and results obtained using EAL

decrease as the number of bays increases (see Table 5.1). Initial error values

are largely due to an increase in shear loads due to the forty-five degree angle.



CHAPTER Vl

CONCLUSIONS AND RECOMMENDATIONS

6.1 Overview

Structural evaluation of lattices, Warren and tetrahedral, using energy

methods is a comprehensive study of the behavior of four groups of lattices with

pin-connectors. Finite elements are used to generate the lattice models. Lattice

geometric parameters include cell geometry, symmetry, topology, and

redundancy. Energy methods, Castigliano's theorems, are used to generate

exact member loads and nodal displacement values which greatly enhance the

study and quantification of lattice structural behavior. With exact displacement

values and extrapolation functions, exact lattice governing displacement

equations are obtained as functions of the repeating cell number. Deflection

equation coefficients for bending are used as lattice stiffness or strength

parameters.

To reiterate, the specific objectives of this research are: 1 .) to develop simple

closed-form exact deflection and vibration equations using Castigliano's

second theorem over the nodal domain of uniform lattice structures; 2.) to

develop expressions for highly redundant lattice structures by using

compatibility requirements; 3.) to develop truss geometries which under

uniform loading exhibit sixth-and eighth-order behavior for deflection; and, 4.)
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to develop associated finite element stiffness matrices and validation

procedures.

6.2 Conclusions

The use of strain and kinetic energies to achieve the four objectives have

been demonstrated by numerous examples. On the foundation of those

examples the following conclusions are drawn. First, closed-form deflection

and eigenvalue equations for statically determinate lattice beams consist of

exact third-and fourth-order polynomial functions in bending and lower order

polynomial terms in shear for static analysis and exact recurrence relations for

free vibrational analysis for n lattice bays. Second, after generating a uniform

redundant lattice geometry, lattice deflection equations and stiffness values are

consistent with linear elastic plate theory. Third, lattice geometries which exhibit

sixth, eighth, and higher order deflection equations are generated by expanding

the width of a lattice beam and removing redundant members. Deflection

equations are derived by increasing the order of the polynomial interpolation

function. Finally beam- and frame-like matrix derivations for a fifth-order soft

lattice maintaining n-bay and shear terms are validated through comparison to

EAL finite element results.

6.3 Recommendations

Future work on lattice structures parallel material and solid mechanics work.

Work on lattice vibration analysis could be expanded to include buckling

analysis. Work could continue on the effects of cutouts on lattice stiffness.
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Thermal effects on lattices are also of interest. All of the previous concerns

could be applied to the study of soft lattices. Hence, there potentially exist a

wide and broad spectrum of work to be done on lattice structures.
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(a) Space Station keel and stored str

._ (b) Support truss assembly

(c) Structure assembly (d) Generic circular panel assembly

(e) Attachment of panel

assembly to support truss (f) Assembled structure

Figure 1.1. Assembly of panel structure on space station keel lattice structure.
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